C7995 Practical NMR Spectroscopy of Biomolecules

The following topics will be covered

- 1. NMR sample, preparation and handling
 - a. Requirements for NMR samples volume, concentration, purity, solvents, buffers, salt, ions, locking and reference substances
 - b. NMR sample tubes types, handling, cleaning
 - c. Effects of temperature and pH
- 2. Spectrometer setup
 - a. Probe tuning, automatic, manual
 - b. Locking, optimizing lock parameters
 - c. Magnet shimming manual, auto (simplex, gradient)
 - d. Temperature control, gas flow, temperature calibration
- 3. Spectrometer calibrations
 - a. Proton pulse calibration using manual and automatic procedures
 - b. Pulse calibration in indirect channels (¹³C, ¹⁵N, ³¹P)
 - c. Pulse power handling and calculation for rectangular and shaped pulses, using ShapeTool
- 4. 1D proton spectroscopy and water suppression techniques
 - a. Proton spectroscopy
 - b. Presaturation
 - c. Selective excitation including WATERGATE
 - d. Gradient water suppression
- 5. 1D NMR spectroscopy of nuclei other than H-1
 - a. Properties of common nuclei (19F, 13C, 15N, 31P)
 - b. Choice of probes
 - c. Power settings and calibrations
- 6. Homonuclear 2D experiments
 - a. Through-bond correlation experiments (COSY, TOCSY)
 - b. Through space correlation (NOESY, ROESY)
- 7. Heteronuclear experiments for natural abundance and isotopically labeled samples
 - a. Checking protein and nucleic acid samples using ¹H-¹⁵N HSQC experiment; gradient sensitivity enhanced and TROSY versions of the experiment
 - b. ¹H⁻¹³C correlation experiment for ¹³C-labeled compounds constant time HSQC experiment.
- 8. Data processing, apodization functions, linear prediction, non-uniform sampling
 - a. Apodization functions
 - b. Baseline/ base plane correction and residual solvent signal subtraction
 - c. Linear prediction

- d. Special requirements for processing of non-uniformly sampled spectra
- 9. Analysis of protein NMR spectra
 - a. Orientation in 1H-15N correlation spectra identification of amide and sidechain signals
 - b. Orientation in 1H-13C correlation spectra identification of alpha, beta and sidechain signals. Chemical shifts of carbonyls.
- 10. Analysis of NMR spectra of nucleic acids
 - a. Identification of sugar, base, amino and imino resonances in 1D spectra
 - b. Identification of through-bond correlations in COSY and TOCSY spectra
 - c. Identification of through-space correlations and exchange peaks in NOESY and ROESY spectra

Literature:

Roberts, G. C. K.: NMR of Macromolecules, A Practical Approach, IRL Press 1993. Berger, S., Braun, S., Kalinowski H. O.: 200 and More NMR Experiments: A Practical Course, Wiley, 2004.

Teng, Q. and Lee, W. P.: Handbook of Structural Biology: Practical NMR Applications, Springer, 2005.

Additional Reading:

Cavanagh, J., Fairbrother, W. J., Palmer, A. G., Skelton, N. J.: Protein NMR Spectroscopy, Principles and Practice, Harcourt Brace & Company 1995. Crosmut, W. R., Carlson, R. M. K.: Two-Dimensional NMR Spectroscopy, Applications for Chemists and Biochemists, Wiley 1987. van de Ven, F. J. M.: Multidimensional NMR in Liquids: Basic Principles and

van de Ven, F. J. M.: Multidimensional NMR in Liquids: Basic Principles an Experimental Methods, Wiley 1995.