
PRACTICAL ASPECTS OF NMR 
RELAXATION STUDIES OF 

BIOMOLECULAR DYNAMICS

Further reading:
(Can be downloaded from my web page)

Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. 
Y., 

NMR Studies of Brownian tumbling and internal motions in 
proteins

Progress in Nuclear Magnetic Resonance Spectroscopy
38, 2001, 197-266.
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Correlation function

The correlation function above is for the isotropic diffusion of a rigid 
rotor.  The correlation time, τc, is the time constant for the exponential 
decay of the function. τc is approximately the amount of time the 
molecule takes to rotate 1 radian.  Notice that short correlation times 
cause the correlation function to decay rapidly and long times cause the 
function to decay more slowly.  The correlation time depends primarily 
on molecular size and shape as well as solvent viscosity, temperature, 
etc…














+
= 2215

2
)(

c

cJ
τω

τω

Spectral density function

The spectral density function, J(ω), is the Fourier transform of the 
correlation function Just as rapidly relaxing time domain signals give 
rise to broad lines, short correlation times have a broad spectral density 
function.  This makes sense:  molecules that tumble very rapidly can 
sample a wide range of frequencies.  Molecules that tumble slowly and 
have very long correlation times only sample lower frequencies.



Relaxation mechanisms

• Dipolar (DD)

• Chemical shift anisotropy (CSA)

• J-coupling

• Quadrupolar

• Chemical exchange

• Etc.



Dipolar relaxation
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Chemical shift anisotropy (CSA)
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There is more to relaxation than 
T1 and T2

We introduced T1 and T2 back in the phenomenological Bloch 
equations.  This was back in the “good old days” when we only had one 
spin with its x, y, or z orientation to worry about.  When we got to 2 
spins, we had 15 terms (plus one more that was unity).  It turns out that 
each of these terms has different relaxation behavior on its own
(autorelaxation).  Terms can also relax through interactions with each 
other, like the 1H 1H NOE (cross-relaxation).

As shown on the next slide, all of these different types of relaxation can 
be expressed in terms of spectral density functions.



Some Autorelaxation Rates for an I S two spin syste m
(Table adapted from Peng and Wagner)

Etc (see Peng and 
Wagner for more)

0103d03d+c0RIS(2IzSz) [new!]

103d3d/2d/23d2dRI(Ix) [e.g. T2 of I]

016d3dd00RI(Iz) [e.g. T1 of I]

003d3dd/2(3d+c)/22d+(2c/3)RS(Sx) [e.g. T2 of S]

006d0d3d+c0RS(Sz) [e.g. T1 of S]
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∆Ω= Ωs and ∆s are the frequency and chemical shift anisotropy 
(CSA) for spin S.  CSA is the difference in chemical shift 
when the molecule is oriented along different axes relative 
to B0.



How do we measure relaxation rates?

• Not all relaxation rates can be measured in practice

• It is importatnt to ensure that only the desired relaxation processes 
occur in the relaxation period.

• Temperature control is essential (rates change approx. 3% per K)

• Typical 8-12 measurements for T1, T2

• Correct determination of experimental errors is important

Scheme of a 2D experiment for heteronuclear relaxation measurement

Preparation
creation of
desirable
coherence

Delay T of variable
length for auto- or cross-
relaxation of selected
coherence

t1 period
labeling of residual
coherence by chemical
shift of heteronucleus

Magnetization
transfer to 1H
nucleus

1H acquisition
with broadband
decoupling on
heteronucleus

Delay
between
scans



Examples of pulse sequences

a – R1 or R1ρ measurement

b – R2 measurement

c – steady-state NOE experiment



Analysis of relaxation data
1. Based on a particular model of motion

such as oscillations, librations, jumps between several discrete
states etc. Uses a correlation function for the specific type of
motion.

Disadvantage: experimental data do not allow to distinguish between 
individual models of motion.

2. “Model-free“
Assumes a certain type of spectral density function characterized by 

a limited number of parameters.

Disadvantage: no information on the specific kind of motion

3. Spectral density mapping
Determines the values of the spectral density function at several 

characteristic frequences (0, ωI, ωS, ωI ± ωS). Interpretation 

qualitative or based on specific models.
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“Model-free“

These functions are correct for rigid spheres and would do a great job 
describing the tumbling of a rock down a hill (if it tumbles isotropically 
and doesn’t break).  However, proteins have internal motions, and more 
realistic models for the correlation and spectral density functions have 
extra terms to describe internal motion.  For example, the popular 
Lipari-Szabo “model free” spectral density function is: 
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 where +=
τe is the correlation time for internal 
motions and S2 is called the 
generalized order parameter.  S2 is 1 
for a perfectly rigid sphere (and the 
more complicated spectral density 
function becomes the simpler one 
above).  S2 is 0 for a completely 
flexible molecule.



Model-free assumptions

1. Commonly, it is assumed that molecular overall rotation is isotropic.

2. The conventional methods for characterisation of molecular overall 
rotation (either isotropic or anisotropic) a priori imply that 
intramolecular motions for most of protein 15N-1H groups are fast
(τe < 100 ps).

3. Usually the parameters governing relaxation of a 15N nucleus (namely, 
15N CSA and 15N-1H distance) are kept fixed at predetermined values, 
assumed to be the same for all 15N nuclei in the protein.

4. From the very beginning, the model-free approach assumes that 
intramolecular motions are independent of molecular overall rotation.

5. Conventional model-free protocols implicitly assume that the protein 
does not aggregate at concentrations typical for NMR relaxation 
studies.



Model-free spectral density functions

Original Lipari-Szabo

Two motions on different time scales

With anisotropic overal rotation



Model-free analysis of data

I. Determination of the parameters of molecular overall rotation
1. From the R2/R1 ratio (τe < 100 ps, τr > 1ns)

2. As an adjustable parameter in simultaneous fitting of the 
relaxation data

3. Hydrodynamic calculations

II. Selection of a suitable correlation function 



Model selection flowchart



Spectral density mapping

The goal in protein dynamics is to know the spectral density function.  
That is difficult.  Several different methods have been derived to model 
the motions of proteins and represent the models as different spectral 
density functions with different parameters that are fit to experimental 
data.One approach that is quite straightforward but requires a lot of 
experimental data has been developed by Peng and Wagner.  This is 
called “spectral density mapping”, and it essentially involves 
experimentally measuring the spectral density function at select NMR 
frequencies.  This overall approach will be outlined on the next few 
slides.  Regardless of the technique one chooses for dynamics 
measurements, the next few slides will also show the mathematical 
relationship between relaxation parameters (such as T1 and T2) and the 
J (ω).
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R1 relaxation rate for 15N

This looks much more complicated than it really is.  Most of what you see are just 
constants that are known.  The important concept is that the relaxation rate 
depends on the spectral density at different frequencies:

)(*)(*)(*)( NHNNNHNZN JcJbJaNR ωωωωω +++−∝

Where a, b, and c are constants.



Our goal is to know 
the spectral density function

)(*)(*)(*)( NHNNNHNZN JcJbJaNR ωωωωω +++−∝

Each of the different auto and cross relaxation terms is similar to the 
one for the T1 of 15N and is just different combinations of the spectral 
density functions at different frequencies.

Peng and Wagner (and others) have derived equations relating the different 
spectral densities to relaxation rates (this is just algebra, not physics).  For 
example:
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Mathematical formulation

• In the original version of spectral density mapping 6 
values are measured: R1I, R1S, R2I, R2IzSz , R2IzSx , rD
(dipolar cross-correlation rate)

• The values of J(w) a rIH (proton-proton NOE) are 
determined by solving a set of linear equation

A, E – expressions characterizing DD and CSA relaxation, consist of physical
constants and bond lengths



Reduced spectral density mapping

• Applicable to large molecules

• Assumes J(wI) º J(wI ≤ wS) º J(wh) 

• The system reduces to three equations
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Measured relaxation rates characterize 
the spectral density function

These rates can be measured, and if you have enough  spectrometer
time at different frequencies, you can directly mea sure the spectral 
density at different frequencies just using 1H and 15N.  For example, a 
11.76 T (500 MHz) magnet will allow measurement of t he following
frequencies:

0 MHz, 50 MHz (15N at 11.76 T), 500 MHz, 450 MHz (1H – 15N), 550 MHz 
(1H + 15N)

A 17.6 T (750 MHz) magnet will measure:

0 MHz, 75 MHz, 750 MHz, 675 MHz, and 825 MHz.



MD simulations

N atoms with co-ordinates r i (i=1…N), which interact with each other 
according to energy potential defined by force-field. The force field 
includes terms for deformations of the chemical structure (bond 
lengths, bond angles, torsion angles) and for long-range interactions 
(van der Waals and electrostatic potential). Numerical integration in 
very short intervals (~1fs)..

MD - great resolution in space and time
NMR – “reality check”
Calculation of spectral density function would require very long

trajectories (hundreds of ns), relaxation parameters not accessible.
It is possible to calculate correlation functions and order parameters from 

the individual snapshots of the trajectory.
Order parameters derived from MD come out usually higher than the 

experimental ones. Motions on fs to ps time scales are characterized 
best (bond lengths, bond angles and their vibrations).


